44 resultados para Gonadal steroid hormones

em Deakin Research Online - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mass differences between the sexes of dimorphic bird species often appear early in the nestling development. But how do adults know how much to feed a chick in a sexually dimorphic species? Do chicks of the heavier sex beg more? We studied begging in Cory’s shearwaters Calonectris diomedea, a species with heavier adult and juvenile males than females. We found that begging rates and call numbers were not different between male and female chicks, but parameters of begging intensity differed between the sexes in their relationship to chick body condition. For the same body condition, males had significantly higher begging call numbers and rates. Acoustical parameters, which were analysed semi-automatically, included the lengths of call and silence intervals, the minimum, mean and maximum frequency in a call and the number of frequency peaks within a call. We found no consistent differences of acoustic begging call elements between the sexes. Male and female chicks did not differ in the levels of the steroid hormones testosterone or corticosterone in the second quarter of the nestling period, and the mechanism leading to sex-related differences in begging rates for a given body condition remains unknown.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evolutionary theory suggests that alternative colour morphs (i.e. genetically controlled phenotypes) may derive similar fitness under frequency-dependent selection. Here we experimentally demonstrate opposing effects of frequency-dependent social environments on plasma hormone levels (testosterone and corticosterone) and immune function between red- and black-headed male morphs of the Gouldian finch (Erythrura gouldiae). Red-headed males are highly sensitive to changes in the social environment, especially towards the relative density of their own aggressive morph, exhibiting high stress responses and immunosuppression in socially competitive environments. In contrast, the non-aggressive black-headed males follow a more passive strategy that appears to buffer them against social stresses. The differential effect of hormones on aggressive behaviour and immune performance reinforces the contrasting behavioural strategies employed by these colour morphs, and highlights the importance of the social environment in determining the individual basis of behavioural and physiological responses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonmammalian vertebrates possess some unusual features in their hormonal systems/ when compared to mammals. As a consequence, they can make an important contribution in investigations concerning the fundamental mechanisms operating in endocrinology. Such studies concerning androgens include inter alia their effects on developmental aspects in the brain of birds and related singing behaviour; the role of neural enzymes in reproductive processes in fish; and the relation between androgens and the stages of spermatogenesis in amphibia, The present thesis examines the biochemistry of androgens in the Australian lizard Tiliqua rugosa. The major compounds studied were testosterone and epitestosterone, which are known to be present in high concentrations in the plasma of the male animal. Previous investigations are expanded, particularly in the areas of steroid identification and testicular biosynthesis. In addition, preliminary studies on the metabolism in the brain (and other tissues) and plasma protein binding are reported. The presence of epitestosterone as a major free androgen in the plasma of the male lizard was confirmed. Other steroids were found in the sulphate fraction. Testosterone sulphate was the most rigorously identified compound, while some evidence was also found for the presence of conjugated 5-androstene-3β,17-diols, etiocholanolone and dehydroepiandrosterone (DHA). Epitestosterone does not appear to be extensively conjugated in this animal. Steroids were not found to be conjugated as glucuronides. The identification studies employed a novel method of electrochemical detection of steroids. This technique was investigated and extended in the current thesis. Biosynthetic studies were carried out on androgen interconversions in the testis, in vitro. The major enzyme activities detected were 17α-arid 17β-oxidoreductases (17α-OR and l7β-OR) and 3β-hydroxysteroid dehydrogenase (3β-HSD)/isonerase. No evidence was found for the presence of a steroid-17-epimerase that would directly interconvert testosterone and epitestosterone. The 17-oxidoreductases were found to be dependent on the cofactor NBDFH. Testosterone appears to be formed mainly via the 4-ene pathway, whereas epitestosterone is formed from both the 4- and 5-ene routes. The compound 5-androstene-3β, 17α-diol was found to be an intermediate in the synthesis of epitestosterone from DHA. Temperature was found to significantly affect 17α-OR activity (maximum at 32°C). In contrast,17β-OR activity was independent of this factor in the testis. Androgen metabolism in the testis was found to be regulated by cofactors, temperature and season. The major enzyme activities found in the male brain were 17α- and 17β-OR. 3βHSD/isomerase was not found; however a low activity of 5α-reductase was identified. Aromatase activity was not positively identified, but preliminary results suggest that it may be present at low levels. The 17-oxidoreductases were widespread throughout the brain. The 17α-OR was significantly lower in the forebrain than other brain sections. The 170-OR activity did not vary significantly throughout the organ, although there was a trend for its activity to be higher in the midbrain region (containing the hypothalamus in these sections). The concentration of endogenous steroids in brain tissue was estimated by radioimmunoassay. Epitestosterone was found throughout the organ structure, whereas testosterone was found mainly in the midbrain (containing hypothalamic regions in these sections). Correlations between enzyme activities and steroid concentrations in brain regions suggested that the main function of 17α-OR is to produce epitestosterone, whereas the 17β-OR may catalyse a more reversible reaction in vivo. Temperature was found to significantly affect both 17α- and 17β-OR activities in the brain. In contrast to the testis, the maximum activity of the brain enzymes occurred at 37°C. The level of 17α-OR activity in the male lizard (100 nmol/g tissue/h) is the highest reported for this enzyme in vertebrates. Both activities were found to be quantitatively similar in the whole brain homogenates of male and female animals, and did not vary seasonally when examined in the male. The 17-oxidoreductases were also found in most other tissues in T.rugosa, including epididymis, adrenal, kidney and liver (but not blood). This suggests that the high activities of both 17α-OR and 17β-OR are dominant features of the steroid system in this animal. The formation of 11-oxygenated compounds was found in the adrenal, in addition to the formation of polar metabolites in the kidney and liver (possibly polyhydroxylated and conjugated steroids). A preliminary investigation into the plasma binding of androgens was carried out. The insults suggest that there are several binding sites for testosterone; one with high affinity and low capacity; the other with low affinity and high capacity. Binding experiments were carried out at 32°C. At this temperature, specific binding was greater than at 25 or 37°C. From the results of competition studies it was suggested that epitestosterone (with a K(i)= 3 X 10 (-6)M for testosterone binding) regulates the binding of testosterone (K(i)=10(-7)M) and hence the concentrations of the latter steroid as a free compound in plasma. In general, the study has shown that the biochemistry of androgens in the reptile T.rugosa is largely similar to that found in other vertebrates. The major difference is a greatly increased activity of 17α-OR, which causes a higher concentration of 17α-compounds to be present in the tissues of this lizard. The physiological roles for epitestosterone are not yet clear. However it appears from this study that this steroid regulates testosterone concentrations in several tissues by either steroidogenic or binding mechanisms. Several major influences on this regulation include temperature, availability of cofactors and seasonal effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1. Sex allocation theory has received considerable attention, yet the mechanism(s) by which mothers skew offspring sex ratios remain unknown. In birds, females are the heterogametic sex, which potentially gives them control of whether gametes will be male or female. How females might control the sex of the gamete is unclear, but one possibility is that variation in steroid hormones may mediate this process. 2. We experimentally altered circulating levels of corticosterone in female Gouldian finches (Erythrura gouldiae), a species that demonstrates both extreme stress responses and extreme offspring sex ratio biases when breeding with a low-quality (genetically incompatible) partner. 3. During egg production, individual females received both corticosterone and metyrapone (a corticosterone-synthesis inhibitor) implants, in random order, to induce both high and low levels of circulating stress hormones (within physiological limits). 4. We found that females with elevated corticosterone levels produced male-biased sex ratios, but when the same females were treated with metyrapone they produced female-biased offspring sex ratios. 5. These stress responses are adaptive because females constrained to breeding with low-quality males can substantially increase their fitness by overproducing sons. Changes in maternal corticosterone levels during stressful situations, such as the quality of a breeding partner, may provide an endocrine mechanism that can be exploited for strategic sex allocation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1.Sex allocation theory has received considerable attention, yet the mechanism(s) by which mothers skew offspring sex ratios remain unknown. In birds, females are the heterogametic sex, which potentially gives them control of whether gametes will be male or female. How females might control the sex of the gamete is unclear, but one possibility is that variation in steroid hormones may mediate this process. 2.We experimentally altered circulating levels of corticosterone in female Gouldian finches (Erythrura gouldiae), a species that demonstrates both extreme stress responses and extreme offspring sex ratio biases when breeding with a low-quality (genetically incompatible) partner. 3.During egg production, individual females received both corticosterone and metyrapone (a corticosterone-synthesis inhibitor) implants, in random order, to induce both high and low levels of circulating stress hormones (within physiological limits). 4.We found that females with elevated corticosterone levels produced male-biased sex ratios, but when the same females were treated with metyrapone they produced female-biased offspring sex ratios. 5.These stress responses are adaptive because females constrained to breeding with low-quality males can substantially increase their fitness by overproducing sons. Changes in maternal corticosterone levels during stressful situations, such as the quality of a breeding partner, may provide an endocrine mechanism that can be exploited for strategic sex allocation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Linoleic acid (LA) is a major constituent of low-density lipoproteins. An essential fatty acid, LA is a polyunsaturated fatty acid, which is oxidised by endogenous enzymes and reactive oxygen species in the circulation. Increased levels of low-density lipoproteins coupled with oxidative stress and lack of antioxidants drive the oxidative processes. This results in synthesis of a range of oxidised derivatives, which play a vital role in regulation of inflammatory processes. The derivatives of LA include, hydroxyoctadecadienoic acids, oxo-​octadecadienoic acids, epoxy octadecadecenoic acid and epoxy-keto-octadecenoic acids. In this review, we examine the role of LA derivatives and their actions on regulation of inflammation relevant to metabolic processes associated with atherogenesis and cancer. The processes affected by LA derivatives include, alteration of airway smooth muscles and vascular wall, affecting sensitivity to pain, and regulating endogenous steroid hormones associated with metabolic syndrome. LA derivatives alter cell adhesion molecules, this initial step, is pivotal in regulating inflammatory processes involving transcription factor peroxisome proliferator-activated receptor pathways, thus, leading to alteration of metabolic processes. The derivatives are known to elicit pleiotropic effects that are either beneficial or detrimental in nature hence making it difficult to determine the exact role of these derivatives in the progress of an assumed target disorder. The key may lie in understanding the role of these derivatives at various stages of development of a disorder. Novel pharmacological approaches in altering the synthesis or introduction of synthesised LA derivatives could possibly help drive processes that could regulate inflammation in a beneficial manner. Chemical Compounds: Linoleic acid (PubChem CID: 5280450), 9- hydroxyoctadecadienoic acid (PubChem CID: 5312830), 13- hydroxyoctadecadienoic acid (PubChem CID: 6443013), 9-oxo-​octadecadienoic acid (PubChem CID: 3083831), 13-oxo-​octadecadienoic acid (PubChem CID: 4163990), 9,10-epoxy-12-octadecenoate (PubChem CID: 5283018), 12,13-epoxy-9-keto-10- trans -octadecenoic acid (PubChem CID: 53394018), Pioglitazone (PubChem CID: 4829).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Environmental temperature has profound effects on animal physiology, ecology, and evolution. Glucocorticoid (GC) hormones, through effects on phenotypic performance and life history, provide fundamental vertebrate physiological adaptations to environmental variation, yet we lack a comprehensive understanding of how temperature influences GC regulation in vertebrates. Using field studies and metaand comparative phylogenetic analyses, we investigated how acute change and broadscale variation in temperature correlated with baseline and stress-induced GC levels. Glucocorticoid levels were found to be temperature and taxon dependent, but generally, vertebrates exhibited strong positive correlations with acute changes in temperature. Furthermore, reptile baseline, bird baseline, and capture stressinduced GC levels to some extent covaried with broadscale environmental temperature. Thus, vertebrate GC function appears clearly thermally influenced. However, we caution that lack of detailed knowledge of thermal plasticity, heritability, and the basis for strong phylogenetic signal in GC responses limits our current understanding of the role of GC hormones in species’ responses to current and future climate variation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Perinatal depression has a significant impact on both mother and child. However, the influence of hormonal changes during pregnancy and the postpartum period remains unclear. This article provides a systematic review of studies examining the effects of maternal cortisol function on perinatal depression. METHOD: A systematic search was conducted of six electronic databases for published research on the relationship between cortisol and perinatal depression. The databases included; MEDLINE complete, PsychINFO, SCOPUS, Psychology and Behavioural Sciences, Science Direct and EBSCO, for the years 1960 to May 2015. Risk of bias was assessed and data extraction verified by two investigators. RESULTS: In total, 47 studies met criteria and studies showed considerable variation in terms of methodology including sample size, cortisol assays, cortisol substrates, sampling processes and outcome measures. Those studies identified as higher quality found that the cortisol awakening response is positively associated with momentary mood states but is blunted in cases of major maternal depression. Furthermore, results indicate that hypercortisolemia is linked to transient depressive states while hypocortisolemia is related to chronic postpartum depression. DISCUSSION AND CONCLUSION: Future research should aim to improve the accuracy of cortisol measurement over time, obtain multiple cortisol samples in a day and utilise diagnostic measures of depression. Future studies should also consider both antenatal and postnatal depression and the differential impact of atypical versus melancholic depression on cortisol levels, as this can help to further clarify the relationship between perinatal depression and maternal cortisol function across pregnancy and the postpartum period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past decade or so it has become widely recognised that the brain is a significant steroidogenic organ. Many publications have highlighted the ability of the brain to synthesise and interconvert a large number of steroid products including cholesterol, progesterone and testosterone. In this study, in vitro experiments were performed to determine if 21-hydroxylation of steroids is undertaken by rat brain astrocytes in culture. This is a common reaction that occurs in the adrenal gland and other organs in mammals, catalysing the conversion of pregn-4-ene-3,20-dione (progesterone) to 21-hydroxypregn-4-ene-3,20-dione (deoxycorticosterone).

Previous reports have indicated that 21-hydroxylation occurs within the rat brain, however, the precise identity of the cells expressing 21-hydroxylase has not yet been determined. Several metabolites, such as 5α-pregnan-3α-ol-20-one (tetrahydroprogesterone) and 3α,21-dihydroxy-5-pregnan-20-one (tetrahydrodeoxycorticosterone) were of particular interest because of their modulatory role in neuronal function, such as their agonist activity at γ-aminobutyric acid (GABAA) receptors.

Evidence was obtained for the expression of peripheral 21-hydroxylase enzyme (P450c21) in cultured rat brain astrocytes by a combination of mass spectroscopy and molecular biology techniques. This is a significant finding as expression of 21-hydroxylase within astrocytes may be indicative of a wider role for these cells in modulating neuronal behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The L1 retrotransposon has significantly shaped the structure of the human genome. At least 30% of human genome sequence can be attributed to L1 reverse transcriptase activity. There are 105 copies of the human L1 retrotransposon, L1Hs, most of which are defective, although ~8–9x103 are full length. L1Hs elements transpose through an RNA intermediate and transcription is thought to be the rate limiting step in retrotransposition. Because transcription of retrotransposons in a variety of organisms has been shown to respond to environmental stimuli, we investigated the influence of various agents on transcription from two different L1Hs promoters. The activity of the L1Hs promoters was analyzed by transfecting L1Hs-expressing cell lines with plasmids containing the L1Hs promoters fused to the LacZ reporter gene and monitoring expression with a ß-galactosidase assay. Small increases in ß-galactosidase activity were observed with both L1Hs promoters after treatment with serum, testosterone, dihydrotestosterone and organochloride pesticides, indicating that these agents can influence L1Hs transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the efficacy of a single vs. double steroid injections in the treatment of carpal tunnel syndrome (CTS) in a randomised double-blind controlled trial. Patients with idiopathic CTS were randomised into (i) one group receiving a baseline methylprednisolone acetate injection plus a saline injection 8 weeks later and (ii) a second group receiving methylprednisolone acetate injection at baseline and at 8 weeks. The primary outcome was the Global Symptom Score (GSS). Forty patients were recruited. By 40 weeks, the mean GSS improved from 25.6 to 14.1 in the single-injection group whereas from 26.7 to 12.6 in the reinjection group, but there was no significant difference in GSS between the two groups (p = 0.26). There were also no significant differences in terms of electrophysiological and functional outcomes. The results suggest that an additional steroid injection confers no added benefit to a single injection in terms of symptom relief.